
MTH 520/622 Final Solutions

1. Let C A be the reflection about a circle A ∈ Ĉ.

(a) Derive an explicit formula for C A.

(b) Consider fA1,A2 = C A1 ◦C A2 , where A1, A2 are distinct circles in

Ĉ. Show that

(i) If A1 and A2 are ultra-parallel, then fA1,A2 is loxodromic.

(ii) If A1 and A2 meet at ∞, then show that fA1,A2 is parabolic.

(iii) If A1 and A2 meet are intersecting, then show that fA1,A2 is
elliptic.

(c) Show every m ∈ Möb+(H) is a composition of at most three re-
flections. [Hint: Any isometry is uniquely determined by where
it takes 3 non-collinear points. Consider the hyperbolic triangle
determined by these points.]

Solution. (a) The complex inversion C A (i.e. reflection) about the
unit circle A ⊂ Ĉ is given by C A(z) = 1/z̄. Consequently, the reflection
about the Euclidean circle A′ = {z ∈ C : |z − z0| = r} is given by

C A′(z) =
r2

z̄ − z̄0
+ z0.

Suppose that B is Euclidean line making an angle θ with R at z = a,
and A′′ = B ∪ {∞}. Then a direct calculation would reveal that

C A′′ = e−iθ(z̄ − a) + a.

(b) (i) Let A1 and A2 be ultraparallel lines in H (i.e they do not meet
wither in H or ∂H.) Then we know from class that there is a unique
geodesic A that is perpendicular to both A1 and A2, which realizes
the distances between them. Clearly, fA1,A2 has to preserve A (why?)
and and its end points ∂H. Hence, fA1,A2 is loxodromic, and A is the
geodesic axis of fA1,A2 .

(ii) If A1 and A2 meet at ∞, then fA1,A2 has a unique fixed point
(namely ∞) in ∂H. Hence, fA1,A2 is parabolic.
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(iii) Suppose that A1 and A2 intersect at a point P ∈ H. Then P is a
unique fixed point (in H) of fA1,A2 , which makes it elliptic.

(c) Let m ∈ Isom+(H). Choose three non-collinear points A,B,C ∈
H and m(A),m(B),m(C). If A = m(A) and B = m(B), then the
reflection C in the line through A and B maps C to m(C). Hence,
C = m.

Suppose that A = m(A). Then consider the reflection C ′ in the
line through A that is equidistant from both B and m(B). Clearly,
B = m(B), and if C = m(C) we are done. However, if C 6= m(C),
we compose C ′ with a reflection in the line through m(A) and m(B)
to conclude that m is a composition of at most two reflections. By
generalizing this argument, we obtain the desired result.

2. Show every m ∈ Möb+(H) is a composition of at most three reflections.

(a) Show that the three angle bisectors of T meet at a single point.

(b) If each side of T has the same length, then show that interior
angles of T are equal. Moreover, if α is the interior of T at a
vertex and a is the length of each side, then prove that

2 cosh
(a

2

)
sin
(α

2

)
= 1.

Solution. (a) Let A, B and C be the vertices of the hyperbolic triangle
T , and let α, β, and γ be the internal angles at these vertices. Any
angle bisector of T is the unique (why?) hyperbolic ray emanating
from a vertex P bisecting the angle at P . Let the angle bisectors of α
and β intersect at a point P inside T . Draw a hyperbolic line segment
connecting P to C, and let this line segment divide the angle γ to
angles γ1 and γ2. Let v = dH(A,P ), w = dH(B,P ), and m = dH(C,P ).
Applying the hyperbolic lat of sines in triangles ACP , BCP , and ABP ,
we have

sinh(m)

sin(α/2)
=

sinh(v)

sinh(γ2)
;

sinh(m)

sin(β/2)
=

sinh(w)

sinh(γ1)
;

sinh(w)

sin(α/2)
=

sinh(v)

sinh(β/2)

These equations imply that

sinh(m)

sin(α/2)
=

sinh(γ1)

sinh(γ2)

sinh(m)

sinh(α/2)
,
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and so we have that sin(γ1) = sin(γ2). As 0 < γ1, γ2 < π, it follows
that γ1 = γ2.

(b) Let the triangle T have internal angles α, β, and γ. By applying
the hyperbolic law of sines, we have

sinh(a)

sin(α)
=

sinh(a)

sin(β)
=

sinh(a)

sin(γ)
,

from which the first part of (b) follows.

For the second part, consider a triangle T ′ with internal angles α/2, α,
and π/2 obtained from T by dropping an angle bisector from a vertex
to the opposite side. Note that T ′ has side lengths a, a/2 and b. By
applying the first hyperbolic cosine law in T ′ and simplifying, we have

cos(α/2) = 2 sin(α/2) cos(α/2) cosh(a/2),

which yields the desired result.

3. For g ≥ 2, let P4g be a compact regular hyperbolic 4g-gon P4g of unit
side length.

(a) Consider a decoration D of P4g given by

∂(P4g) =

2g∏
i=1

ai

2g∏
i=1

a−1i .

Show that D determines a hyperbolic structure Xg on Sg.

(b) Consider another decoration of P4g given by

∂(P4g) =

g∏
i=1

[xi, yi].

Show that D′ too determines a hyperbolic structure X ′g on Sg.

Solution. (a) & (b) It is quite apparent that both decorated polygons
described above satisfy the conditions of a gluing recipe, and will de-
termine closed hyperbolic surfaces (why?). Furthermore, these surfaces
will be orientable, as they do not contain an imbedded Möbius band
(why?). In both cases, the identification induced by the decoration will
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yields a CW -complex structure on a closed orientable surface compris-
ing 1 vertex, 2g edges, and 1 face. Consequently, by the classification
of surfaces the hyperbolic surfaces obtained from these decorated poly-
gons will be homeomorphic to Sk. It remains to show that k = g.
However, this follows directly from the fact that

χ(Sk) = 2− 2k = 1− 2g + 1.
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